If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+8x-45=0
a = 3; b = 8; c = -45;
Δ = b2-4ac
Δ = 82-4·3·(-45)
Δ = 604
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{604}=\sqrt{4*151}=\sqrt{4}*\sqrt{151}=2\sqrt{151}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{151}}{2*3}=\frac{-8-2\sqrt{151}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{151}}{2*3}=\frac{-8+2\sqrt{151}}{6} $
| 8x8+8=25 | | 5x+6-2x=3 | | -4x^2+6x-6=0 | | 4x+4=19+x | | 48+11n-20n+12=0 | | x=1/2+2/3+1/4 | | 11−5a=6(5a+4) | | 32+x=56 | | 10-4a=-30 | | c+4=22 | | 8(x+2)=x+2(x+3) | | 7x+2(x-4)=-3x-4-4x-8 | | 10+2=4+3x-5x | | H(t)=-16(t-19/16)(t+1/16) | | p^2+9p-36-4p=0 | | 6p=5=13 | | 105+x+83=180 | | (2x+1)^2-(3x-2)^2+(x-1)(x+3)-8x=0 | | 4x-17+3x-5=180 | | 0=-16t2+90 | | 2f/2=80/2 | | 2.5x-4=3x-8 | | 10/2=2/n | | 0=-16t2+70 | | x=4^x+3(x-1) | | -8x-23=1 | | x=4√x+3(x-1) | | 0.03x0.03x0.03x0.03x0.03=1 | | -7(3x+7))=175 | | -3z+3=3/5 | | -2(-3x-3)=6 | | 5x+7+6x-3+15x=180 |